
Mapping Stored Procedure Output to POCO Class
John F. Gnazzo

Introduction
A Stored Procedure is a group of SQL statements that form a logical unit and perform a particular task,

and they are used to encapsulate a set of operations or queries to execute on a database server.

Contemporary business applications rely on using Stored Procedures to efficiently manage data from a

database.

Recently, while working on a Asp.Net 5, Entity Frameworks 7, .Net Core 1.0 project, I had to digest the

results of a stored procedure in my application. Unfortunately, the functionality to execute a stored

procedure directly has not been implemented in Entity Frameworks 7 at this time.

This blog will discuss a work around to execute a stored procedure and also to easily map a result set

from a stored procedure into a class.

Discussion
After Googling the night away, I came to the realization that ADO.NET database operations using
DataSets and DataTables did not work either. Finally, I was able to cobble together workable solution.

The following code uses a generic method ExecuteStoredProcedure, which takes a stored procedure
name, and a list of parameters, as arguments. This method calls another generic method
DataReaderMapToList to perform the actual mapping.

See the actual code for both methods below:

The Code

 private readonly MyDbContext _context;

 public DatabaseServices(MyDbContext context)
 {
 _context = context;
 }

public List<T> ExecuteStoredProcedure<T>(string storedProcedure,
List <SqlParameter> parameters) where T : new()

 {
using (var cmd =
 _context.Database.GetDbConnection().CreateCommand())

 {
 cmd.CommandText = storedProcedure;
 cmd.CommandType = CommandType.StoredProcedure;

 // set some parameters of the stored procedure
 foreach (var parameter in parameters)
 {

 cmd.Parameters.Add(parameter);
 }

 if (cmd.Connection.State != ConnectionState.Open)
 cmd.Connection.Open();

 using (var dataReader = cmd.ExecuteReader())
 {
 var test = DataReaderMapToList<T>(dataReader);
 return test;
 }
 }
 }

 private static List<T> DataReaderMapToList<T>(DbDataReader dr)
 {
 List<T> list = new List<T>();
 while (dr.Read())
 {
 var obj = Activator.CreateInstance<T>();
 foreach (PropertyInfo prop in obj.GetType().GetProperties())
 {
 if (!Equals(dr[prop.Name], DBNull.Value))
 {
 prop.SetValue(obj, dr[prop.Name], null);
 }
 }
 list.Add(obj);
 }
 return list;
 }
 }

Usage
The code can simply do the mapping as follows:

 var Id = 1;
 var databaseServices = new DatabaseServices();

 var sqlParameters = new List<SqlParameter>
 {
 new SqlParameter("@ID",
 SqlDbType.Int) {Value = Id}
 };

 var resultSet = databaseServices

.ExecuteStoreProcedure<MyPocoClass>
("dbo.ClassificationSettingsCustomerList", sqlParameters);

The resultSet object above contains a list of data matching the
MyPocoClass. (i.e. List<MyPocoClass>)

Conclusion

Contemporary business applications rely on using Stored Procedures to efficiently manage data from a

database.

This blog has discussed a work around to execute Stored Procedures and also to easily map a result set

from a Stored Procedure into a class, as the direct execution of Stored Procedures has not yet been

implemented in Entity Frameworks 7.0.

